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Abstract: Dehydrogenation of 9-hydroxy decalinic enones and analogs with DDQ resulted in a 
formal dienone-phenol type rearrangement via B-ring cleavage, while the corresponding dienone 
acetates underwent base-catalyzed formal dienone-phenol type rearrangement analogously. 
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In our previous synthetic studies on the eudesmane-type sesquiterpene natural products, 
we have observed a skeletal rearrangement of decalinic enone intermediate 1 during the 
attempt on dehydrogenation by 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone (DDQ) 
leading to phenolic compound 3 as major product (eq. 1)1.  The reaction was assumed 
to proceed via a dienone intermediate 2 catalyzed by acid, which is formally 
characterized as dienone-phenol rearrangement2.  Detailed mechanistic studies by 
Waring and co-workers3 suggested that the unstable dienones of type 2 undergo readily 
dienone-phenol rearrangement via intramolecular acyl migration under mild acidic 
condition or B-ring cleavage in reaction with nucleophile to afford aromatized phenolic 
products. 
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To investigate the effect of C-9 oxygenated functions and substituents bearing on 
the ring system, we prepared4 some of the C-9 hydroxylated analogs of decalinic enone 1 
with different substituents and B-ring fusion, which were subjected to the 
dehydrogenation reaction with DDQ5.  The results are summarized in Table 1.  In 
contrast to Waring’s previous report6, the starting hydroxyl enones were consumed 
slowly in refluxing dioxane and the phenolic compounds were isolated as major isolable 
products in low to moderate yields.  The initial B-ring cleavage is obvious in all 
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examples7.  Substituent at C-4 (i.e. methyl) prohibited reforming of B-ring in products 
to give phenolic aldehydes (entry 2).  Five-membered B-ring analogs of enone 1 
afforded B-ring cleavage products α, β-unsaturated phenolic aldehydes by further 
dehydrogenation with DDQ (entries 5, 6).  This results imply that the formal 
dienone-phenol rearrangement occurred via the initial B-ring cleavage of the 
corresponding dienone intermediates through acid-catalyzed retro-aldol like process to 
give the phenolic aldehyde intermediates which undergo intramolecular phenolate aldol 
and subsequent dehydration for substrates with no substituent at C-4 position (entries 1, 3, 
4). 

 
Table 1  Dehydrogenation of 9-hydroxy decalinic enones and analogs with DDQa 
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a The reaction were run with 1.3 equiv. of DDQ in refluxing dioxane. b Products were fully 
characterized spectroscopically.8 c Isolated yield after silica gel chromatography. 
 

Acetylation of C-9 hydroxy group of the corresponding decalinic enones and 
analogs listed in Table 1 prohibited the retro-aldol type B-ring cleavage of the dienone 
intermediates resulting from the dehydrogenation by DDQ to give the corresponding 
dienone acetates in moderate to good isolated yield.  Interestingly, deacetylation of the 
dienone acetates under mild condition (K2CO3, MeOH, room temperature) resulted in a 
fast and clean formation of rearranged phenolic compounds as major isolated products 
(Table 2), typical process of formal dienone-phenol rearrangement9.  Apparently, this 
rearrangement was triggered by the release of free C-9 hydroxy group and preceded via a 
base-catalyzed retro-aldol-intramolecular phenolate aldol transformation.  Similarly, the 
reforming of B-ring was hindered by the C-4 substituent (i.e. methyl) and 5-membered 
B-ring analogs leading to phenol aldehyde products (entries 2, 5, 6). 

In conclusion, the C-9 oxygenofunctions (carbonyl or hydroxy) greatly facilitated 
the formal dienone-phenol type rearrangement for decalinic enones of type 1 and analogs 
via initial B-ring cleavage catalyzed either by mild acid or base through a retro-aldol 
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process (Scheme 1).  The resulting phenolate aldehydes derived from decalinic enones 
(n = 1) readily cyclize intramolecularly in the absence of C-4 substituent. 
 
Table 2  Mild base-catalyzed dienone-phenol rearrangement of C-9 acetoxyl decalinic dienones  

and analogsa 
 

Entry Dienone substrate Time (min) Productb Yield (%)c 
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a The reaction were run with 1.0 equiv. of anhydrous K2CO3 in methanol at room temperature. b 
Products were fully characterized spectroscopically. 8 c Isolated yield after silica gel chromato- 
graphy. d Diastereomeric ratio: syn / anti 4.5 :1. 
 

Scheme 1 
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